关于物理科技小论文2000字以内 关于机械运动、声音、物态变化、密度、光、透镜其中一样,浅显一点的,请发到我邮箱1036790345@qq.com

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/13 03:58:58
关于物理科技小论文2000字以内 关于机械运动、声音、物态变化、密度、光、透镜其中一样,浅显一点的,请发到我邮箱1036790345@qq.com

关于物理科技小论文2000字以内 关于机械运动、声音、物态变化、密度、光、透镜其中一样,浅显一点的,请发到我邮箱1036790345@qq.com
关于物理科技小论文
2000字以内 关于机械运动、声音、物态变化、密度、光、透镜其中一样,浅显一点的,请发到我邮箱1036790345@qq.com

关于物理科技小论文2000字以内 关于机械运动、声音、物态变化、密度、光、透镜其中一样,浅显一点的,请发到我邮箱1036790345@qq.com
相对论是关于时空和引力的基本理论,主要由阿尔伯特·爱因斯坦(Albert Einstein)创立,依据研究的对象不同分为狭义相对论和广义相对论.相对论和量子力学的提出给物理学带来了革命性的变化,共同奠定了近代物理学的基础.相对论极大的改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”、“四维时空”、“弯曲时空”等全新的概念.
相对论(Relativity)的基本假设是相对性原理,即物理定律与参照系的选择无 大质量物体扭曲时空改变物体行进方向关.狭义相对论(Special Relativity)和广义相对论(General Relativity)的区别是,前者讨论的是匀速直线运动的参照系(惯性参照系)之间的物理定律,后者则推广到具有加速度的参照系中(非惯性系),并在等效原理的假设下,广泛应用于引力场中.相对论和量子力学是现代物理学的两大基本支柱.经典物理学基础的经典力学,不适用于高速运动的物体和微观领域.相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题.相对论颠覆了人类对宇宙和自然的“常识性”观念,提出了“时间和空间的相对性”、“四维时空”、“弯曲空间”等全新的概念.狭义相对论提出于1905年,广义相对论提出于1915年(爱因斯坦在1915年末完成广义相对论的创建工作,在1916年初正式发表相关论文).
由于牛顿定律给狭义相对论提出了困难,即任何空间位置的任何物体都要受到力的作用.因此,在整个宇宙中不存在惯性观测者.爱因斯坦为了解决这一问题又提出了广义相对论.
狭义相对论最著名的推论是质能公式,它说明了质量随能量的增加而增加.它也可以用来解释核反应所释放的巨大能量,但它不是导致原子弹的诞生的原因.而广义相对论所预言的引力透镜和黑洞,与有些天文观测到的现象符合.
根据质能方程,人们很容易推出 “ 光速是宇宙中最快速度 ”.因为,当物体达到光速时,其质量将变得无穷大,与事实不相符.然而,还有人提出,存在着两种宇宙,即 “快宇宙 ” 和 “ 慢宇宙 ”.所有基本粒子在快宇宙中比光速快,即快子,因此,他们所组成的物质也比光速快,反之亦然.此外,有天文学家惊人观测到超光速现象,包括星系相离的速度、类星体膨胀的虚度等等. 但是,至今没有一种说法令人信服,也没有一种说法推翻相对论.
绝对时空观
所谓时空观,即是有关时间和空间的物理性质的认识.伽利略变换是力学相对论原理的数学描述.它集中反映了经典力学的绝对时空观.
1.时间间隔与惯性系的选择无关
若有两事件先后发生,在两个不同的惯性系中的观测者测得的时间间隔相同.
2.空间间隔也与惯性系的选择无关
空间任意两点之间的距离与惯性系的选择无关.
我们可以看出,在经典力学中,物体的坐标和速度是相对的,同一地点也是相对的.但时间、长度和质量这三个物理量是绝对的,同时性也是绝对的.这就是经典力学的绝对时空观.
以太?
十九世纪中叶,麦克斯韦建立了电磁场理论,并预言了以光速C传播的电磁波的存在.在十九世纪末,实验完全证实了麦克斯韦理论.电磁波是什么?它的传播速度C是对谁而言的呢?当时流行的看法是整个宇宙空间充满一种连续介质叫做“以太”,光线和射电讯号是在以太中的波动.完整理论需要的是仔细测量以太的弹性性质,为此,哈佛大学建立了杰弗逊实验室,整个建筑不用任何铁钉,以免干扰磁测量,然而因策划者忽视了褐红色砖头中所含大量铁,预计实验无法如期进行.到世纪之末,开始出现了和穿透一切以太的观念的偏差,如果认为地球是在一个静止的以太中运动,那么根据速度叠加原理,在地球上沿不同方向传播的光的速度必定不一样,但是实验否定了这个结论;如果认为以太被地球带着走,又明显与天文学上的一些观测结果不符.就此,人们发现,这是一个充满矛盾的理论.
迈克尔逊 莫雷 的实验示意图1887年阿尔伯特·迈克尔逊和爱德华·莫雷利用光的干涉现象进行了非常精确的测量,仍没有发现地球有相对于以太的任何运动.对此,洛仑兹(H.A.Lorentz)提出了一个假设,认为一切在以太中运动的物体都要沿运动方向收缩.由此他证明了,即使地球相对以太有运动,迈克尔逊也不可能发现它.爱因斯坦从完全不同的思路研究了这一问题.他指出,只要摒弃牛顿所确立的绝对时间的概念,一切困难都可以解决,根本不需要什么以太.
★注释: 以太:由希腊学者提出,认为是光传播的介质.
固定以太理论:如果光是在一种称为以太的弹性物质中的波,则在向它运动来的航天飞船上的某人(a)看来光速变得较高,而在与光同方向运动的航天飞船上的某人(b)看来光速变得较低.
两个基本假设
1.物理规律在所有惯性系中都具有相同的形式.
2.在所有的惯性系中,光在真空中的传播速率具有相同的值C.
第一个叫做相对性原理.它是说:如果坐标系K'相对于坐标系K作匀速运动而没有转动,则相对于这两个坐标系所做的任何物理实验,都不可能区分哪个是坐标系K,哪个是坐标系K′.
第二个原理叫光速不变原理,它是说光(在真空中)的速度c是恒定的,它不依赖于发光物体的运动速度.
从表面上看,光速不变似乎与相对性原理冲突.因为按照经典力学速度的合成法则,对于K′和K这两个做相对匀速运动的坐标系,光速应该不一样.爱因斯坦认为,要承认这两个假设没有抵触,就必须重新分析时间与空间的物理概念.
不过,可以证明迈克耳孙-莫雷实验是错误的,道理非常简单,实验精度远远不够.假设实验光波的波长为600纳米(1纳米等于10的负9次方米),那么,要获得90度的干涉相差,两列干涉波在时间上需要获得150纳米的行程差,问题是,150纳米是非常小非常小,环境背景噪声引起的仪器振动远超过150纳米,实验设备的精度远远不够,不可能得到正确结果.
洛伦兹变换
经典力学中的速度合成法则实际依赖于如下两个假设:
1.两个事件发生的时间间隔与测量时间所用的钟的运动状态没有关系.
2.两点的空间距离与测量距离所用的尺的运动状态无关.
爱因斯坦发现,如果承认光速不变原理与相对性原理是相容的,那么这两条假设都必须摒弃.这时,对一个钟是同时发生的事件,对另一个钟不一定是同时的,同时性有了相对性.在两个有相对运动的坐标系中,测量两个特定点之间的距离得到的数值不再相等,距离也有了相对性.
如果设K坐标系中一个事件可以用三个空间坐标x、y、z和一个时间坐标t来确定,而K′坐标系中同一个事件由x′、y′、z′和t′来确定,则爱因斯坦发现,x′、y′、z′和t′可以通过一组方程由x、y、z和t求出来.两个坐标系的相对运动速度和光速c是方程的唯一参数.这个方程最早是由洛仑兹得到的,所以称为洛仑兹变换.
利用洛仑兹变换很容易证明,钟会因为运动而变慢,尺在运动时要比静止时短,速度的相加满足一个新的法则.相对性原理也被表达为一个明确的数学条件,即在洛仑兹变换下,空时变量x'、y'、z'、t'将代替空时变量x、y、z、t,而任何自然定律的表达式仍取与原来完全相同的形式.人们称之为普遍的自然定律对于洛仑兹变换是协变的.这一点在探索普遍的自然定律方面具有非常重要的作用.
时间与空间的联系
此外,在经典物理学中,时间是绝对的.它一直充当着不同于三个空间坐标的独立角色.爱因斯坦的相对论把时间与空间联系起来了.认为物理的现实世界是各个事件组成的,每个事件由四个数来描述.这四个数就是它的时空坐标t和x、y、z,它们构成一个四维的刚性连续时空,通常称为明可夫基里平直时空.在相对论中,用四维方式来考察物理的现实世界是很自然的.狭义相对论导致的另一个重要的结果是关于质量和能量的关系.在爱因斯坦以前,物理学家一直认为质量和能量是截然不同的,它们是分别守恒的量.爱因斯坦发现,在相对论中质量与能量密不可分,两个守恒定律结合为一个定律.他给出了一个著名的质量-能量公式:E=MC^2,其中c为光速.于是质量可以看作是它的能量的量度.计算表明,微小的质量蕴涵着巨大的能量.在后来的核反应试验中证明了这一点.
对爱因斯坦引入的这些全新的概念,大部分物理学家,其中包括相对论变换关系的奠基人洛仑兹,都觉得难以接受.旧的思想方法的障碍,使这一新的物理理论直到一代人之后才为广大物理学家所熟悉,就连瑞典皇家科学院,1922年把诺贝尔奖金授予爱因斯坦时,也只是说“由于他对理论物理学的贡献,更由于他发现了支配光电效应的定律.”对于相对论只字未提.
建立广义相对论
爱因斯坦于1915年进一步建立起了广义相对论.狭义相对性原理还仅限于两个相对做匀速运动的坐标系,而在广义相对论性原理中匀速运动这个限制被取消了.他引入了一个等效原理,认为不可能区分引力效应和非匀速运动,即任何加速和引力是等效的.他进而分析了光线在靠近一个行星附近穿过时会受到引力而弯折的现象,认为引力的概念本身完全不必要.可以认为行星的质量使它附近的空间变成弯曲,光线走的是最短程线.基于这些讨论,爱因斯坦导出了一组方程,它们可以确定由物质的存在而产生的弯曲空间几何.利用这个方程,爱因斯坦计算了水星近日点的位移量,与实验观测值完全一致,解决了一个长期解释不了的困难问题,这使爱因斯坦激动不已.他在写给埃伦菲斯特的信中这样写道:“方程给出了近日点的正确数值,你可以想象我有多高兴!有好几天,我高兴得不知怎样才好.”
实验验证
1915年11月25日,爱因斯坦把题为“万有引力方程”的论文提交给了柏林的普鲁士科学院,完整地论述了广义相对论.在这篇文章中他不仅解释了天文观测中发现的水星轨道近日点移动之谜,而且还预言:星光经过太阳会发生偏折,偏折角度相当于牛顿理论所预言的数值的两倍——只有在日全食期间观测.爱因斯坦筹备经费,天文学家弗罗因德利希去克里米亚进行观测,不巧,德国对俄国宣战,弗罗因德利希被怀疑是间谍,扣押至8月底,那是他和他的小组与德国扣押的俄国高级军官做了交换.[1]
当年爱丁顿测量的日食相关资料(3张)1919年5月25日的日全食给人们提供了一次观测机会.英国人爱丁顿奔赴非洲西海岸的普林西比岛,进行了这一观测.11月6日,汤姆逊在英国皇家学会和皇家天文学会联席会议上郑重宣布:得到证实的是爱因斯坦而不是牛顿所预言的结果.他称赞道“这是人类思想史上最伟大的成就之一.爱因斯坦发现的不是一个小岛,而是整整一个科学思想的新大陆.”泰晤士报以“科学上的革命”为题对这一重大新闻做了报道.消息传遍全世界,爱因斯坦成了举世瞩目的名人.广义相对论也被提高到神话般受人敬仰的宝座.
从那时以来,人们对广义相对论的实验检验表现出越来越浓厚的兴趣.但由于太阳系内部引力场非常弱,引力效应本身就非常小,广义相对论的理论结果与牛顿引力理论的偏离很小,观测非常困难.七十年代以来,由于射电天文学的进展,观测的距离远远突破了太阳系,观测的精度随之大大提高.特别是1974年9月由麻省理工学院的泰勒和他的学生赫尔斯,用305米口径的大型射电望远镜进行观测时,发现了脉冲双星,它是一个中子星和它的伴星在引力作用下相互绕行,周期只有0.323天,它的表面的引力比太阳表面强十万倍,是地球上甚至太阳系内不可能获得的检验引力理论的实验室.经过长达十余年的观测,他们得到了与广义相对论的预言符合得非常好的结果.由于这一重大贡献,泰勒和赫尔斯获得了1993年诺贝尔物理奖.